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'Definitions

= A Distributed Resource (DR) unit includes either a
Distributed Generation (DG) unit, a Distributed
Storage (DS) unit, or a hybrid of DG and DS units.

= A micro-grid is a cluster of loads and distributed
resource units serviced by a distribution grid and
capable of
o operation in a grid-connected mode,
o operation in an autonomous (islanded) mode,
o ride-through between the above two modes.

A P E

CAPE

Berkeley 2005 Symposium on
Microgrid, Berkeley, California R.Iravani © 2005 University of Toronto




‘ Assumptions

= Radial distribution system

= Dispatchable DR units

= No spinning reserve or back-up units
= No communications

= Frequency deviation (and frequency control)
considered
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Benchmark System
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‘ Investigation Methods

= Digital time-domain simulation in
PSCAD/EMTDC environment

= Small-Signal dynamic analysis based on
eigen analysis in MATLAB environment
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Small-Signal Model
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Power Management and
DR Controls

dq
Current

Power Control

Management + | |

Gate Pulse

Signal

Processor
&

PLL

Berkeley 2005 Symposium on
Microgrid, Berkeley, California R.Iravani © 2005 University of Toronto

Centre for Applied Power Eledronics




‘ DR Controls

dqg current controllers for an electronically-interfaced DG unit
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Power Management Strategies

= A Power Management System (PMS) assigns

references for real and reactive power components
of DR units within a micro-grid to:

a

Q

share real-/reactive-power among DR units,

(rapidly) respond to small-signal and large-signal
disturbances,

determine final operating conditions of DR units to balance
power and restore micro-grid frequency,

assist in re-synchronization of an autonomous micro-grid to
the main grid.
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'PMS (Real Power)

= Frequency-droop
characteristic and
frequency restoration

algorithm
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'PMS (Reactive Power)

s Strategy | : Voltage-droop
Characteristic

n Strategy Il :
Voltage Regulation

= Strategy Ill : Power Factor
Correction

= Strategy IV :
Hybrid of | to Il
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‘ Case Studies

DG1: 1.47-MW

Casel

Case IT

Real (1/s) Im. (rad/s) Real (1/s) Imn. (rad/s)
0.59-MVAr 219,556 + 216405 - 22987 + 213914
_ 366,03 + 117557 _ 2800 + 1273 64
DG2: 1.87-MW _18.0 +725.9 _E26 + 705.99
1.06-MVAr -39.56 + 507.5% - 2171 + 456.86
- 110,71 + 427 52 _1132.44 + 420,54
DG3: 0.96-MW - 1710.09 + 330 43 _1708.07 + 33086
_748.57 + 380 52 747089 +377.24
0.41-MVAr _ 365,37 + 33508 - 341.20 + 37422
] _425.76 +377.0 42575 + 375,98
Total Demand: 56,46 1+ 336,43 143,99 + 201,00
4.21-MW/2.79-MVAr -193.0 + 77.35 - 112,32 + 39 41
_0.738 + 098 - 0.86 +10.0
= Casel: = Casell:
Real PMS: frequency-droop, Real PMS: same as Case |,

Reactive PMS: voltage-droop
characteristics for DG2 and DG3

Reactive PMS: voltage-droop for DG2
and voltage regulation for DG3
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‘ Eigen Analysis
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‘ Eigen Analysis
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Intentional Islanding

a) Bus Yoltages for DG2 and DG3
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Intentional Islanding

a) Bus voltages of DG2 and DG3
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Accidental Islanding (Fault)

a) Bus Yoltages of DG2 and DG3
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Accidental Islanding (Fault)

DG2: pf Correction and DG3: V-reg.
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‘ Autonomous Operation

a) Bus Yoltages

Load Change
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‘ Autonomous Operation

Loss of DG3

Loss of a Generation Unit
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‘ Conclusions

= Optimized controls and PMS parameters of DK
units can provide satisfactory performance of
the microgrid under both grid-connected and
islanded modes of operation.

= A hybrid of voltage droop, voltage regulation
and power factor correction in conjunction with
frequency droop and frequency restoration can
minimize dynamic interactions among DR units
and and assist in microgrid transition between
grid-connected and islanded modes.
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